Conformations of Some αβ-Unsaturated Carbonyl Compounds. Part V.¹ Assignments of Raman and Infrared Spectra of Methyl and [²H₃]Methyl Acrylates and *trans*-Crotonates

By William O. George* and David V. Hassid, School of Chemical and Physical Sciences, Kingston Polytechnic, Kingston-upon-Thames, Surrey

William C. Harris, Department of Chemistry, Furman University, Greenville, South Carolina, U.S.A. William F. Maddams, British Petroleum Co. Ltd., Epsom Division, Great Burgh, Epsom, Surrey

Raman and i.r. spectra of methyl and [2H3]methyl acrylates and trans-crotonates in the liquid state at room temperature and as frozen solids are presented together with vibrational assignments for particular conformers. Intensities of selected Raman bands at different temperatures lead to enthalpy differences ($\Delta H^0 \pm$ standard deviation) of 377 ± 56 cal mol⁻¹ between the high and low energy forms of methyl trans-crotonate, in very good agreement with a previous result based on i.r. measurements.

VARIABLE-TEMPERATURE i.r. studies ² of methyl, [²H₃]methyl, ethyl, and [2H5]ethyl acrylates and transcrotonates enabled bands to be assigned to low (I) and high (II) energy conformers. On this basis enthalpy and entropy differences were calculated for the system

(I) 👞 (II). However, Williams, Owen, and Sheridan³ detect only (II) in the microwave spectrum of methyl acrylate. In order to resolve this apparent contradiction, measurement by an independent method was desirable. In the present work conformer bands are identified in the Raman spectra. Although Raman and i.r. spectra are both a consequence of molecular vibrations, the selection rules and the experimental techniques differ considerably and studies of different bands by each method can be regarded as independent in terms of assessing the validity of the conclusions of quantitative measurements. A ΔH^0 value for the equilibrium (I) = (II) is, therefore, presented for methyl trans-crotonate for comparison with results of previous studies. The present studies enable previous 4-6 vibrational assignments for unsaturated esters to be revised and extended, with inclusion of information on assignments obtained by a recent study 7 of various deuteriated methyl acetates.

EXPERIMENTAL

Samples were obtained or prepared and purified by methods described previously.²

I.r. spectra of films and frozen solids were recorded on a Perkin-Elmer 457 instrument by using Beckman-R.I.I.C. variable-temperature equipment.

Raman spectra of liquids and annealed frozen solids were recorded with a JEOL JRS-SI Raman spectrophotometer fitted with a V.T. 3B variable-temperature accessory; the blue and green lines of the Coherent Radiation 52G Argon ion laser were used for excitation of the sample. Standard calibrations were employed; wavenumber scales for i.r.

¹ Part IV, W. O. George, and A. J. Porter, J.C.S. Perkin II, 1973, 954. ² W. O. George, D. V. Hassid, and W. F. Maddams, J.C.S.

Perkin II, 1972, 400. ⁸ G. Williams, N. L. Owen, and J. Sheridan, Trans. Faraday

Soc., 1971, 67, 922.

and Raman are expected to be within 1-3 cm⁻¹ and the temperature scales for variable temperature measurements within 1-2 °C.

RESULTS AND DISCUSSION

The fundamental modes of vibration of methyl and ²H₂]methyl acrylate and *trans*-crotonate are included in Tables 1 and 2, in terms of vibrations within or between CH₂:CH, CH₃·CH:CH, CO₂, and CH₃ groups. This description is only approximate since there will be considerable interaction in the case of many fundamentals. However, in a number of cases this approximate description has merit over others. Assignments are made on the basis of temperature dependence (bands which are associated with high and low energy conformers designated \downarrow and \uparrow , respectively), comparison between CH₃ and C(²H)₃ compounds, and comparison of the spectra of related families of compounds. Methyl acrylate and trans-crotonate have at best a plane of symmetry corresponding to the C_s point group leading to 20a' + 10a'' fundamental modes in methyl acrylate and 25a' + 14a'' fundamental modes in methyl transcrotonate. The in-plane (a') and out-of-plane (a'')modes are both i.r. and Raman active, but should be polarized and depolarized respectively in the Raman. The observed vibrational spectra of the acrylates and trans-crotonates are presented in Tables 1 and 2 together with the assignments. These assignments are briefly discussed for particular spectral regions.

3500-2000 cm⁻¹.-The six CH stretching modes of methyl acrylate are assigned to bands between 2950 and 3110 cm⁻¹. Three bands occur in the i.r. and Raman spectra of methyl and [2H3]methyl acrylate in the 3030-3110 cm⁻¹ region. We consider the most likely assignment to be that in which the highest and lowest wavenumber bands are assigned to the antisymmetric and symmetric CH₂ stretching modes, respectively. The relative weakness of the band near 3070 cm⁻¹ in the Raman spectra would suggest a combination assignment, possibly 1633 + 1436 cm⁻¹. The symmetric CH_3O stretching mode is assigned at 2955 cm⁻¹ and the corresponding antisymmetric mode is considered to

⁴ A. Hidalgo and M. T. Sardina, Anales real Soc. españ Fis. Quim., 1956, 52B, 627.

⁵ W. R. Feairheller and J. E. Katon, J. Mol. Structure, 1967, 1,

<sup>239.
&</sup>lt;sup>6</sup> F. Dalton, P. S. Ellington, and G. D. Meakins, J. Chem. Soc., 1960, 3181.

coincide with the =CH stretching mode near 2994 cm⁻¹. CH₃O stretching modes of similar wavenumber values are assigned in methyl *trans*-crotonate; additional

			TABL	Е 1		
Vibrat	ional spe	ctra	of methy	1 and [2H	[₃]m	ethyl acrylate
Moth	zl acrylate		(v/cm (*H_)M	1 ⁻¹) ethyl acrylat	e .	
Methy			[11 ₃]		~ - -	
I.r. (liquid) 3106vw 3074vw, sh	Raman (liquid) 3110w 3068w, sh	P† dp ?	I.r. (liquid) 3106vw 3074vw	Raman (liquid) 3109m 3077w	pt dp ?	Assignment CH_{2} as. str., a' 1633 + 1436 = 3609
3036w, sh	3038vs	sp	3040vw	3041vs	$^{\mathrm{sp}}$	CH2 s. str., a'
3020vw, sn 2994w, sh	2994vs	sp	2993vw	2995vs	sp	$\begin{cases} CH str.a', CH_2O \\ as str., a' \\ CH_3O as. str., a'' \end{cases}$
2955m	2955vs	sp	2925vw	2930vw		CH ₃ O s. str., a'
2905 w 2850w, sh 2837w, sh	2911vw 2892vw, sh 2857w 2837w 2804vw, sh	sp sp sp				
		-	2280w, sh 2257w 2197w	2280w 2260w, sh 2196m	dp dp sp	C(⁸ H) ₃ O as. str., a'' 1725 + 455 = 2180, 1407 + 781 = 2188
			2129vw 2083w 2015vw	2127s 2082s	sp sp	C(^a H) ₃ O as. str., <i>a</i> ' C(^a H) ₃ O s. str., <i>a</i> '
1725vs	1726s	sp	1725vs	1722s 165550w eb	sp sp	C=0 str., a'
1633m 1620m	1634vs	sp	1633m 1618m	1635vs	sp	C=C str., a' 1277 + 351 = 1628, $2 \times 810 = 1620$
1460m, sh 1450m, sh	1519vw 1458w, sh 1450w, sh	sp dp dp	1445m- ch			CH_3 as. bend, a' CH_3 as. bend, a''
1436s 1400vs	1440w 1404vs 1210www.ch	? sp	14407vs	1407vs	sp	CH_3 s. bend, a' CH_3 scissor, a'
1293m, sh†	1297m, sh	sp	1307vs†	1308w, sh	sp	CH bend $a'(I)$,
1277vs↓	1282m	sp	1290 v s, sh \downarrow	1283m	sp	CH bend $a'(II)$,
120 0 vs†	12 1 0w	$^{\mathrm{sp}}$	1220vs	1219w	sp	$C-O \operatorname{str.}, a'(I),$
1184vs, sh↓	1184vw	dp				$CH_{3}O \operatorname{rock}, a'(1)$ $C-O \operatorname{str.}, a'(11)$. $CH_{3}O \operatorname{rock}, a''(11)$
			1092vs	1088w, sh	sp	$(C(^{*}H)_{3}O \text{ s. bend, } a',$ $(C(^{*}H)_{3}O \text{ rock, } a')$
1068vs‡	10 67w	3	1073m↓ 1057w, sh	107 2w 1059vw, sh	? dp	CH_2 rock, a' (II) $C(^{2}H)_{3}O$ as. bend, a''
1003w, sh 984vs	996w	?	1003vw, sh 984vs	1002w 976vw, sh	sp mp	$CH_2 \operatorname{rock}, a'(I)$ CH=CH def., a''
972s, sh	970w	mp	960m, sh 947w, sh 902w	956m 944w, sh 920yw, sh	mp ? dp	$CH_2 \text{ def.}, a''$ $C(^3H)_3 O \operatorname{rock}, a''$
855m 812vs	856vs 813w	sp ?	811s	802vs	sp	CH ₃ -O str., a' C-C str., a'
		•		781s. sb	SD	$\begin{cases} C(^{2}H_{3})O \operatorname{rock}, a^{\prime\prime}, \\ C(^{2}H)_{3}O \operatorname{str.}, a^{\prime}. \end{cases}$
677 yran ch			675vw sh	,	-r	O-C=O bend, $a'O-C=O$ bend, a' and
663m4	663.000	dn	647w1	645vw	dn	$a^{\prime\prime}$ CH _a =CH def $a^{\prime\prime}$ (I)
626vw↓ 522vw	625w↓ 523w, sh	sp sp	611vw↓ 520vw	607vw 522vw, b, s	? h ?	$CH_2 = CH \text{ def.}, a''(II)$ C-C-O bend, a'(II)
476vw, sh	470m 351m	sp sp	456vw, sh	454m	sp	$\dot{C-C-O}$ bend, $a'(I)$ CH_3-O bend, a' $C(^{2}H)$ O bend, a'
	235m 198w, sh	sp dp		220m 185w, sh	dp	$C-OCH_3$ bend, a' O-CH ₃ torsion, a'' ,
	, -	•		-	-	$-OCH_3$ torsion, a'' , C-C torsion, a''

 \dagger Polarizations: sp = strongly polarized; mp = moderately polarized; dp = depolarized.

bands in this region of the spectrum of methyl and $[{}^{2}\mathrm{H}_{3}]$ methyl *trans*-crotonate are associated with corresponding modes of the CH₃C group. There appears to be considerable band overlap in this region.

The i.r. spectra of $[{}^{2}H_{3}]$ methyl acrylate and *trans*crotonate show five bands of similar intensity between 2070 and 2280 cm⁻¹, but in the Raman spectra the three lowest wavenumber bands are more intense than the two highest wavenumber bands. The assignments shown in the Tables are in accordance with polarization measurements. Vibrational spectra of methyl and [²H₃]methyl transcrotonates (v/cm⁻¹)

Methyl trans-crotonate				., ,		
			[⁹ H ₃]Methyl trans-crotonate			
I.r. (liquid) 8050vw, sh	Raman (liquid) 3055w, sh	р† ?	I.r. (liquid) 3058vs, sh	Raman (liquid) 3055w, sh	р† ?	Assignment CH=CH as. str., a'
030w, sh 995w, sh	3034m 2990w, sh	sp ?	3030vw, sh	3033m	sp	CH≃CH s. str., a' CH ₃ O as. str., a'
975w, sh	2978w, sh	?	2977w	2976w, sh	dp	CH ₃ C as. str., a', CH ₃ O as. str., a'
950m	2953vs	sp	2945w	2943m ,sh	2	$CH_{g}C.as. str. a'', CH_{3}Os. str. a'$
2920w, sh 2850w, sh	2917vs 2885w, sh 2850m	sp sp sp	2918w 2877vw 2853vw	2919vs 2877w, sh 2853m	sp sp sp	CH₂C s. str., a'
			2273w, sh	2734vw 2274vw	sp dp	1321 + 968 = 2289, 1198 + 2000
			2252w	2252 vw	dp	$C(^{2}H)_{3}O$ as. str.,
			2200w	2194m	sp	a^{a} $2 \times 1105 = 2210,$ 1321 + 903 = 2124
.720vs 1680w, sh 1661s 1653m, sh	1719vs 1680vw, sh 1663vs	sp ? sp	2130vw 2078w 1720vs 1675vw, sh 1660m 1657w, sh	2125m 2077s 1714vs 1676vs, sh 1652vs	sp sp ?	$C({}^{2}H_{3})O \text{ as. str.}, a'$ $C({}^{2}H)_{3}O \text{ s. str.}, a'$ C=O str., a' $2 \times 840 = 1680$ C=C str., a'
	1637vw, sh	sp		1630vw, sh	sp	(CCH, as, bend.
1448w, slı	1446m	?	1446m	1440m	?	$\begin{cases} a' \\ OCH_3 \text{ as. bend,} \\ a'' \end{cases}$
436s			1438m, sh			$\begin{cases} OCH_3 \text{ s. bend, } a' \\ CCH_3 \text{ as. bend,} \\ a'' \end{cases}$
1375w	1373m	$^{\mathrm{sp}}$	1375w	1376m	sp	CCH3 s. bend, a'
1335w, sh 1315vs†	1317vw, sh	?	1321vs†	1317vw, sh		CH=CH as. bend,
1293s, sh†	1292m	sp	1296s↓	1290m		a'(1) CH=CH s. bend, a'(1), CH ₃ O
1276vs↓	1273w, sh	sp				CH=CH as. bend,
l267s, sh↓			1272 w ↓	1273w, sh	sp	CH=CH s. bend, $a'(II), CH_3O$ rock $a'(II)$
l195 vs †	1196vw	sp	1198vs	1198m	sp	C-Ostr., a'(I), CH_3Orock, a''
l178vs↓	1178vw, slı	?				C-Ostr., a'(II), CH ₃ Orock, a'' (II)
104s	1104vw	dp	1105w 1092s	1101vw 1088vw, sh	dp dp	$CH_{3}C'rock, a'$ $C(^{2}H)_{3}O$ as. bend, a', rock a''
1043m↓	1044w	dp		1050vw, sh	dp	CH_3Crock, a'' (II), $C(^2H)_3Os$. bend, a'
1028m† 968s	1026w, sh 989vw	dp sp	1040m 968s	1036w 972m	dp sp	$CH_3C rock, a''(I)$ CH=CH as. def., a''
9 34 w	935w	sp	920w	916vw	dp	$C-C \operatorname{str.} a'$ $C(^{2}H)_{3}O \operatorname{s.} \operatorname{bend} a'$
904w	90 6 w	sp	903 vw, s h	899vw, sh	?	C(^a H) ₃ O rock, a', CH ₃ -O str., a'
842m	846m	sp	837w	835w	dp	CH=CH as. def., a''
724w 689m	723m 688vw	sp dp	786w	784w 682m	sp dp	$C({}^{*}H)_{3}$ -O str., a'' O-C=O bend, a'' C=O def., a'''
495w↓	640vw 496w↓	? sp	4 90w↓	636vw 488w↓	? sp	CH_3 -C bend, a' C-C-O bend, a'
453m†	452w↑	sp	440w↑	/ 437vw†	- sp	(II) C-C-O bend, a'
385vw	386s	sp	382vw	378s 369m. sh	sp	(I) C-C bend, a' C($^{\circ}H$),-O bend a'
	323vw 240vw, sh	sp ?		345vw, sh 305w 220vw, sh	sp sp ?	C-O-C bend, a' CH ₃ -C def. a'', CH ₃ -C torsion,
	197 vw, s h	?		190vw, sh	?	a'' O-CH ₃ , C-CH ₃ , and -OCH ₃
	160w	?		155w	?	torsion, a'' C-C torsion, a''

2000—1500 cm⁻¹.—In the i.r. spectra of methyl and $[^{2}H_{3}]$ methyl acrylate a doublet occurs in the C.C stretching region (1633 and 1620 cm⁻¹). On cooling both liquid and carbon disulphide solution samples there is

no change in relative intensities until the solid state is attained and the samples are repeatedly annealed; the lower wavenumber component then disappears. It is possible that the component at 1620 cm⁻¹ is due either to the fundamental of a high energy conformer,⁵ or, more probably, to combinations of conformer bands at lower wavenumber in Fermi resonance with the C:C stretching mode.

The i.r. spectra of the trans-crotonates contain both high and low wavenumber components to the band near 1660 cm⁻¹ (assigned to the CC stretching mode) which are also present in the solid state spectrum. The band near 1680 cm^{-1} may be due to an overtone of the $a' \text{ mode at } 840 \text{ cm}^{-1}.$

1500-1000 cm⁻¹.--The assignments of the OMe bending modes are based on our studies of various deuteriated acetates 7 and on previous studies of methyl acetate⁸ and methyl formate.^{8,9} The MeC and MeO rocking modes and the C-O stretching modes are also assigned from these comparisons. The olefinic CH bending modes may be compared with those in acrylonitrile and crotononitrile.¹⁰

Within this spectral region a number of pairs of conformer bands are detectable in either or both the i.r. and Raman spectra. Bands arising from high energy conformers (\downarrow) become relatively weaker at lower temperatures and are absent in the spectra of the solid. The corresponding band from the low energy conformer (\uparrow) becomes relatively stronger at lower temperatures. Although the conformational splitting is due to differences in the mode of vibration, both components of pairs of conformer bands are given the same description.

In both trans-crotonate spectra a conformer pair is observed near 1315 and 1276 cm⁻¹; these are assigned to the a' antisymmetric CH bend because of the large i.r. intensity. A second pair of conformer bands near 1293 and 1267 cm^{-1} is present in the trans-crotonate and acrylate spectra; these are prominent in the Raman (polarized) and also in the i.r. This pair is assigned to an overlapping a' symmetric CH bend and an a' MeO rocking mode. A third pair of conformer bands near 1200 and 1180 cm⁻¹ for all four species is prominent in the i.r. but weak in the Raman and is assigned to an overlapping a' C-O stretch and an a''OMe rocking mode.

The fourth and lowest pair in this region occurs near 1070 and 1000 cm⁻¹ in the acrylates (assigned to the a'CH₂ rocking mode) and near 1048 and 1028 cm⁻¹ in the trans-crotonates (assigned to the a" CH3C rocking mode).

1000-500 cm⁻¹.-The two high frequency o.p. CH deformation modes of the vinyl group have been well characterized ¹¹ and are considered in a more general

⁸ J. K. Wilmshurst, J. Mol. Spectroscopy, 1957, 1, 201.
 ⁹ H. Suzi and T. Zell, Spectrochim. Acta, 1963, 19, 1933.
 ¹⁰ J. R. Durig, C. K. Tong, C. W. Hawley, and T. Bragin, J. Phys. Chem., 1971, 75, 44.

study.¹² The third CH₂:CH o.p. mode at lowest wavenumber was assigned, on the basis of resolved fine structure, at 593 cm⁻¹ in acraldehyde.¹³ In methyl acrylate this has been assigned at 811 cm⁻¹ on the basis of comparison with vinyl acetate,⁵ and at 664 cm⁻¹ on the basis of comparison with ethyl acrylate.14 The present comparisons with [2H3]methyl acrylate support the latter assignment since in both species bands occur near 650 cm⁻¹ which are Raman depolarized. These bands are intensified at lower temperature in the i.r. and Raman, and bands at 30-40 cm⁻¹ to lower values become correspondingly weaker, suggesting conformational splitting for this mode. This splitting is readily explicable in terms of geometrical models which show considerable differences in the environment of the o.p. vinyl mode for the two conformers.

The o.p. CH:CH antisymmetric deformation in methyl and [2H3]methyl trans-crotonate spectra occurs near 968 cm⁻¹. The corresponding o.p. CH:CH symmetric deformation is less well characterized but has been assigned ¹⁰ to 768 cm⁻¹ in trans-crotonitrile, 845 cm⁻¹ in fumaronitrile, and 746 cm⁻¹ in trans-but-2-ene. In the present work i.r. and Raman bands near 840 cm⁻¹ are assigned to this mode.

The assignment of most of these o.p. CH modes is well established on the basis of i.r. intensities and vapour contours; it is therefore surprising that for certain of these modes the corresponding Raman bands are partly polarized. In a planar molecule o.p. vibrations should be completely depolarized in the Raman. These results may mean that these acrylates and trans-crotonates are not completely planar. Careful polarization measurements of these modes in a selected series of compounds would provide information on this matter.

In the 800-950 cm⁻¹ region strong i.r. and Raman bands are observed. One very strong polarized Raman band at 856 cm⁻¹ is observed in methyl acrylate and appears to shift to 781 cm⁻¹ in the Raman spectrum of $[{}^{2}H_{3}]$ methyl acrylate. This is therefore assigned to an Me-O stretching mode since this can have mass dependence. Prominent bands near 810 cm⁻¹ in i.r. and Raman of both acrylates are likewise assigned to a C-C stretching mode on account of the absence of mass dependence. It is likely that the true modes involve a contribution from C-C and C-O bands in each case, and the intensities are likely to be high in the Raman if the C-C contribution is significant, and high in the i.r. if the C-O contribution is significant. The corresponding bands in the *trans*-crotonates are less intense, suggesting a smaller degree of localizations of the modes in comparison with acrylates.

Other modes which may be expected in this region ¹¹ W. E. Potts and R. A. Nyquist, Spectrochim. Acta, 1959, 15,

679. ¹² J. R. Cowles, W. G. Fateley, and W. O. George, following

Soc. (B), 1969, 810.
 ¹⁴ A. J. Bowles, W. O. George, and D. B. Cunliffe-Jones, J. Chem. Soc. (B), 1970, 1010.

⁷ W. O. George, T. E. Houston, and W. C. Harris, Spectrochim. Acta, 1974, 30A, 1035.

paper. ¹³ A. J. Bowles, W. O. George, and W. F. Maddams, J. Chem.

are the a' and a'' O-C=O bends, which are assigned near 700 cm⁻¹ as coincident bands in the acrylates but as resolved bands in the *trans*-crotonates.

500—100 cm⁻¹.—Since bands in this region have not been well characterized, the assignments to skeletal deformations are only tentative. Conformer pairs of bands were observed in the spectra of the *trans*crotonates near 490 and 445 cm⁻¹; the higher wavenumber band is absent from i.r. and Raman spectra basis of the absence of a band in the corresponding $CH_2:CH$ compounds. Bands at lower wavenumbers are observed in the Raman spectra with intensification from samples of frozen solids. It was not possible to assign the torsional modes in the spectra of methyl acetate and the various $[^{2}H_{3}]$ forms. The corresponding -OMe and O-Me torsions with respect to two- and three-fold barriers in the present compounds are also likely to be very weak. Depolarized Raman bands

Raman spectra of methyl *trans*-crotonate: (a) 0-4000 cm⁻¹ (room temperature); (b) 0-4000 cm⁻¹ (annealed at -50 °C); (c) 425-525 cm⁻¹ (at 69 °C); (d) 425-525 cm⁻¹ (at -30 °C)

measured for the solid state. These bands are assigned to the C-C-O bending vibration, which is likely to be susceptible to the conformational equilibrium (I) (II). I.r. bands (with Raman counterparts) at 476 and 456 cm⁻¹ in the acrylates are similarly assigned to the C-C-O bending mode; a band near 520 cm⁻¹ may be the corresponding mode in the high energy conformer since it is weakened considerably in the i.r. spectrum on cooling. However, there is no marked weakening for this band in the Raman so the assignment is doubtful. A prominent polarized Raman band near 380 cm⁻¹ in the *trans*-crotonates with i.r. counterparts can be assigned to a C-C bend in the CH₃·CH:CH group on the near 190 cm⁻¹ are tentatively assigned to both these modes. The torsion of the C–C bond forming a two-fold barrier between the two unsaturated groups is expected in the 100—165 cm⁻¹ region,¹⁵ and may be tentatively assigned near 160 cm⁻¹ in the *trans*-crotonates. These interesting torsional assignments merit a detailed fari.r. study involving vapour as well as liquid and solid phases in order to measure the barrier heights associated with the various conformers described.

Conformational Equilibria.—Measurements² of intensities of i.r. bands for selected conformer pairs in acrylates

¹⁵ R. K. Harris and R. E. Witkowski, Spectrochim. Acta, 1964, **20**, 1651.

J.C.S. Perkin II

and trans-crotonates have been made between -100and 35 °C. It is assumed that the high energy band (\downarrow) is associated with (II) and the low energy band (\uparrow) with (I). Vibrational spectroscopy does not provide definitive evidence on these conformational assignments for molecules of this complexity. These assignments are based on comparison with simpler molecules ¹³ in which rotational fine structure or band contours may be related to molecular conformations.

In the present work, variable temperature Raman studies were made to provide independent information on the equilibrium (I) \implies (II). Tables 1 and 2 reveal a number of pairs of Raman bands corresponding to i.r. conformer bands. This is confirmation of an equilibrium. In the current studies the Raman conformer bands are less amenable to quantitative measurements of intensity variation with temperature than the i.r. bands. No quantitative measurements were feasible on methyl acrylate because the relevant bands were weak or overlapped. For methyl trans-crotonate [Figure (a) and (b)] the Raman spectra of liquid and frozen solid are compared. A weak pair of conformer bands is observed at 496 and 452 cm⁻¹; these are sufficiently well separated for measurements of intensity variation with temperature. Eleven spectra were recorded at temperatures between -30 and 69 °C and the two extreme spectra are shown in the Figure [(d) and (c)].

Plots of log (I_{496}/I_{452}) against 1/T were made by using both peak height measurements and integrated peak area measurements. These yielded values of ΔH^0 for (I) \rightleftharpoons (II) of 384 ± 41 (on the basis of peak heights) and 371 ± 68 cal mol⁻¹ (on the basis of peak areas).

As in the previous i.r. study, a value is quoted with its standard deviation as an indication of precision. Since the standard deviation is determined from the statistics of the scatter of the points about the slope derived from the least squares plot, this is insensitive to the many systematic errors inherent in the method. which may lead to a result having good precision but poor accuracy. However, comparison of the mean value of ΔH^0 (377 \pm 56 cal mol⁻¹) derived from the present Raman study with a mean value of 306 ± 30 cal mol-1 derived from the previous i.r. study shows very good agreement. Vibrational spectroscopy can only provide indirect information on the structure of the conformers participating on the equilibrium for these types of compound. Studies of saturated esters 7 have indicated that the ester group normally is stabilized in the form in which the $-CO_2R$ group is in the planar cis form shown in (I) and (II), and comparisons with other $\alpha\beta$ -unsaturated carbonyl compounds ¹³ suggest that these are the low and high energy forms, respectively.

[4/1288 Received, 27th June, 1974]